Metric and Curvature in Gravitational Phase Space

نویسندگان

  • Glenn Watson
  • John R. Klauder
چکیده

At a fixed point in spacetime (say, x0), gravitational phase space consists of the space of symmetric matrices {F ab} [corresponding to the canonical momentum π(x0)] and of symmetric matrices {Gab} [corresponding to the canonical metric gab(x0)], where 1 ≤ a, b ≤ n, and, crucially, the matrix {Gab} is necessarily positive definite, i.e. ∑ uGabu b > 0 whenever ∑ (ua)2 > 0. In an alternative quantization procedure known as metrical quantization, the first and most important ingredient is the specification of a suitable metric on classical phase space. Our choice of phase space metrics, guided by a recent study of Affine Quantum Gravity, leads to gravitational phase space geometries which possess constant curvature and are all higher dimensional analogs of the Poincaré plane, which applies when n = 1. This result is important because phase spaces with such a maximal degree of symmetry lead naturally via the procedures of Metrical Quantization to acceptable Hilbert spaces of high dimension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : g r - qc / 0 11 20 53 v 3 2 6 A pr 2 00 2 Metric and Curvature in Gravitational Phase Space

At a fixed point in spacetime (say, x0), gravitational phase space consists of the space of symmetric matrices {F ab} [corresponding to the canonical momentum π(x0)] and of symmetric matrices {Gab} [corresponding to the canonical metric gab(x0)], where 1 ≤ a, b ≤ n, and, crucially, the matrix {Gab} is necessarily positive definite, i.e. ∑ uGabu b > 0 whenever ∑ (ua)2 > 0. In an alternative quan...

متن کامل

ar X iv : g r - qc / 0 11 20 53 v 1 2 0 D ec 2 00 1 Metric and Curvature in Gravitational Phase Space

At a fixed point in spacetime (say, x0), gravitational phase space consists of the space of symmetric matrices {F ab} [corresponding to the canonical momentum π(x0)] and of symmetric matrices {Gab} [corresponding to the canonical metric gab(x0)], where 1 ≤ a, b ≤ n, and, crucially, the matrix {Gab} is necessarily positive definite, i.e. ∑ uGabu b > 0 whenever ∑ (ua)2 > 0. In an alternative quan...

متن کامل

ar X iv : g r - qc / 0 11 20 53 v 2 2 1 D ec 2 00 1 Metric and Curvature in Gravitational Phase Space

At a fixed point in spacetime (say, x0), gravitational phase space consists of the space of symmetric matrices {F ab} [corresponding to the canonical momentum π(x0)] and of symmetric matrices {Gab} [corresponding to the canonical metric gab(x0)], where 1 ≤ a, b ≤ n, and, crucially, the matrix {Gab} is necessarily positive definite, i.e. ∑ uGabu b > 0 whenever ∑ (ua)2 > 0. In an alternative quan...

متن کامل

محاسبه انحنای اسکالر در مدل اسپینی مختلط چهارحالته و بررسی رفتار آن

 In various statistical mechanical models, introduction of a metric into space of prameters gives a new perspective to the phase structure. In this paper, the scalar curvature R of this metric for a one dimensional four-state complex spin model is calculated. It is shown that this parameter has a similar behaviour to the Ising and Potts models.

متن کامل

On Special Generalized Douglas-Weyl Metrics

In this paper, we study a special class of generalized Douglas-Weyl metrics whose Douglas curvature is constant along any Finslerian geodesic. We prove that for every Landsberg metric in this class of Finsler metrics, ? = 0 if and only if H = 0. Then we show that every Finsler metric of non-zero isotropic flag curvature in this class of metrics is a Riemannian if and only if ? = 0.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002